Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0010.v1

ABSTRACT

Background: The outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the global COVID-19 pandemic. The urgency for an effective SARS-CoV-2 vaccine has led to the development of a first series of vaccines at unprecedented speed. The discovery of SARS-CoV-2 spike-glycoprotein mutants, however, and consequentially the potential to escape vaccine-induced protection and increased infectivity, demonstrates the persisting importance of monitoring SARS-CoV-2 mutations to enable early detection and tracking of genomic variants of concern. Results: We developed the CoVigator tool with three components: 1) a knowledge base that collects new SARS-CoV-2 genomic data, processes it and stores its results; 2) a comprehensive variant calling pipeline; 3) an interactive dashboard highlighting the most relevant findings. The knowledge base routinely downloads and processes virus genome assemblies or raw sequenc-ing data from the COVID-19 Data Portal (C19DP) and the European Nucleotide Archive (ENA), respectively. The results of the variant calling pipeline are visualized through the dashboard in the form of tables and customizable graphs, making it a versatile tool for tracking SARS-CoV-2 variants. We put a special emphasis on the identification of intrahost mutations and make available to the community what is, to the best of our knowledge, the largest dataset on SARS-CoV-2 intrahost mutations. In the spirit of open data, all CoVigator results are available for download. The CoVigator dashboard is accessible via covigator.tron-mainz.de. Conclusion: With increasing demand worldwide in genome surveillance for tracking the spread of SARS-CoV-2, CoVigator will be a valuable resource of up-to-date list of mutations, which can be incorporated into global efforts to sustainably prevent or treat infections.


Subject(s)
Coronavirus Infections , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.31.478157

ABSTRACT

Introduction: The B.1.1.529 (Omicron) SARS-CoV-2 variant has raised global concerns due to its high number of mutations and its rapid spread. It is of major importance to understand the impact of this variant on the acquired and induced immunity. Several preliminary studies have re-ported the impact of antibody binding and to this date, there are few studies on Omicron CD8+ T-cell immune escape. Methods: We first assessed the impact of Omicron and B.1.617.2 (Delta) variant mutations on the SARS-CoV-2 spike epitopes submitted to the Immune Epitope Database (IEDB) with positive outcome on MHC ligand or T-cell assays (n=411). From those epitopes modified by a mutation, we found the corresponding homologous epitopes in Omicron and Delta. We then ran the netMHCpan computational MHC binding prediction on the pairs of IEDB epitopes and matching homologous epitopes over top 5 MHC I alleles on some selected populations. Lastly, we applied a Fisher test to find mutations enriched for homologous epitopes with decreased predicted binding affinity. Results: We found 31 and 78 IEDB epitopes modified by Delta and Omicron mutations, respectively. The IEDB spike protein epitopes redundantly cover the protein sequence. The WT pMHC with a strong predicted binding tend to have homologous mutated pMHC with decreased binding. A similar trend is observed in Delta over all HLA genes, while in Omicron only for HLA-B and HLA-C. Finally, we obtained one and seven mutations enriched for homologous mutated pMHC with decreased MHC binding affinity in Delta and Omicron, respectively. Three of the Omicron mutations, VYY143-145del, K417N and Y505H, are replacing an aromatic or large amino acid, which are reported to be enriched in immunogenic epitopes. K417N is common with Beta variants, while Y505H and VYY143-145del are novel Omicron mutations. Conclusion: In summary, pMHC with Delta and Omicron mutations show decreased MHC binding affinity, which results in a trend specific to SARS-CoV-2 variants. Such epitopes may decrease overall presentation on different HLA alleles suggesting evasion from CD8+ T-cell responses in specific HLA alleles. However, our results show B.1.1.529 (Omicron) will not totally evade the immune system through a CD8+ immune escape mechanism. Yet, we identified mutations in B.1.1.529 (Omicron) introducing amino acids associated with increased immunogenicity.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.04.429765

ABSTRACT

Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 146,917 SARS-CoV-2 genome assemblies and 2,393 NGS datasets from GISAID, NCBI Virus and NCBI SRA archives focusing on non-synonymous mutations in the spike protein. Only around 13.8% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.98% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 2,592 distinct variants were found in total. The majority of the observed variants were recurrent, but only nine and 23 recurrent variants were found in at least 0.5% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 15.1% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the increasing importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL